A Lower Bound for the Class Number of Certain Cubic Number Fields

By Günter Lettl

Abstract

Let K be a cyclic number field with generating polynomial $$
X^{3}-\frac{a-3}{2} X^{2}-\frac{a+3}{2} X-1
$$ and conductor m. We will derive a lower bound for the class number of these fields and list all such fields with prime conductor $m=\left(a^{2}+27\right) / 4$ or $m=\left(1+27 b^{2}\right) / 4$ and small class number.

1. Introduction. Let h_{m} denote the class number of the cyclotomic field $\mathbf{Q}\left(\zeta_{m}\right)$, and h_{m}^{+}, the class number of its maximal real subfield $\mathbf{Q}(\cos (2 \pi / m))$. It is a well-known conjecture of Vandiver that $p+h_{p}^{+}$holds for all primes $p \in \mathbf{P}$. This is a customary assumption for proving the second case of Fermat's Last Theorem (for more details see Washington [16]). Since h_{p}^{+}grows slowly ($h_{p}^{+}=1$ for $p<163$ with the use of the Generalized Riemann Hypothesis (GRH), van der Linden [10]), for no p with $h_{p}^{+}>1$ the exact value of h_{p}^{+}is known without using GRH. Masley suggested that perhaps $h_{p}^{+}<p$ always holds, but a counterexample was found in [3], [12]. The class number of each real subfield of $\mathbf{Q}\left(\zeta_{p}\right)$ divides h_{p}^{+}, and in this way one can find primes with $h_{p}^{+}>1$. Using the quadratic subfield, Ankeny, Chowla and Hasse [1] showed that $h_{p}^{+}>1$ if p belongs to certain quadratic sequences in N, and S.-D. Lang [9] and Takeuchi [15] found more such sequences. Similar results were obtained for $h_{4 p}^{+}$by Yokoi [17]. Using the cubic subfield of $\mathbf{Q}\left(\zeta_{p}\right)$, which has been thoroughly investigated (e.g., [2], [5], [8]), the theorem of the present paper yields the following results:

If a is an odd integer, $a>23$, and $p=\left(a^{2}+27\right) / 4$, a prime, then $h_{p}^{+}>1$.
If b is an odd integer, $b>7$, and $p=\left(1+27 b^{2}\right) / 4$, a prime, then $h_{p}^{+}>1$.
A conjecture about primes in quadratic sequences (Hardy and Wright [7, I.2.8]) implies that there exist infinitely many primes p of each of these two forms, because one can write

$$
\frac{a^{2}+27}{4}=\left(\frac{a-3}{2}\right)^{2}+3\left(\frac{a-3}{2}\right)+9
$$

and

$$
\frac{1+27 b^{2}}{4}=3\left(\frac{3 b-1}{2}\right)^{2}+3\left(\frac{3 b-1}{2}\right)+1
$$

[^0]2. Class Number Bounds and Main Results. Let K be a cyclic cubic number field with conductor m and class number h. It is well known that m is the product of distinct primes, which are congruent to $1 \bmod (6)$, and of 9 , if 3 ramifies in K. The class number h is congruent to $1 \bmod (3)$, if m is a prime or $m=9$, and h is divisible by 3 otherwise. Set $f(s)=L(s, \chi) \cdot L(s, \bar{\chi})$ for $s \in \mathbf{C}$, where χ and $\bar{\chi}$ are the nontrivial cubic Dirichlet characters modulo (m) belonging to K. Since the discriminant of K equals m^{2}, the analytic class number formula yields
\[

$$
\begin{equation*}
h=\frac{m \cdot f(1)}{4 \cdot R} \tag{1}
\end{equation*}
$$

\]

where R is the regulator of K. Moser [11] showed that for prime conductors, $h<m / 3$ holds, so cubic fields will never lead to a contradiction to Vandiver's conjecture. Our aim is to establish a lower bound for the class number of a special family of cubic fields and to list all fields of some special types with prime conductor and small class number. From a result of Stark [14] one can deduce $f(1)>c / \log m$, where c is effectively computable, but this bound is not suited for our purposes. From the results of the next section we will obtain:

$$
\begin{align*}
& \text { If } K \text { is a cyclic cubic number field with conductor } m>10^{5} \text {, then } \\
& f(1)>0.023 \cdot m^{-0.054} \text {. } \tag{2}
\end{align*}
$$

The harder problem is to find an upper bound for the regulator, which is only achieved for the following family of cyclic cubic fields. The polynomial

$$
\begin{equation*}
f_{a}(X)=X^{3}-\frac{a-3}{2} X^{2}-\frac{a+3}{2} X-1, \quad a \in \mathbf{N} \text { odd } \tag{3}
\end{equation*}
$$

is irreducible over \mathbf{Q}, has discriminant $D\left(f_{a}\right)=\left(\left(a^{2}+27\right) / 4\right)^{2}$, and if ε is a zero of f_{a}, the other zeros are $\varepsilon^{\prime}=-1 /(\varepsilon+1)$ and $\varepsilon^{\prime \prime}=-(\varepsilon+1) / \varepsilon$. Therefore, f_{a} is a generating polynomial of a cyclic cubic field K with conductor m, and we define $k \in \mathbf{N}$ by $\sqrt{D\left(f_{a}\right)}=\left(a^{2}+27\right) / 4=k m$.

We call the field K of type A, if $k=1$, and of type B , if $k=27$ and $a=27 b$ with $b \in \mathbf{N}$ odd, $b \neq 1$ (in this case we have $m=\left(1+27 b^{2}\right) / 4$). It is well known that fields of type A or B have relatively large class numbers (see, for example, the tables of Gras [5]). Shanks [13] states that for cubic fields of type A with prime conductor "a rough mean value for h is given by $h \approx 12 m / 35(\log m)^{2}$ ".

Lemma 1. Let K be a cyclic cubic field with generating polynomial f_{a}, conductor m and regulator R. Then,

$$
\begin{equation*}
4 R<\left(\frac{1}{2} \log D\left(f_{a}\right)\right)^{2}=(\log (k m))^{2} \tag{4}
\end{equation*}
$$

Proof of Lemma 1. Since the zeros $\varepsilon, \varepsilon^{\prime}, \varepsilon^{\prime \prime}$ of f_{a} are units of K, we can estimate the regulator of K by $R \leqslant \operatorname{Reg}\left(\left\{\varepsilon, \varepsilon^{\prime}\right\}\right)=: R^{\prime}$, if $R^{\prime} \neq 0$ (see Lemma 4.15 in [16]). Choosing

$$
\varepsilon=\frac{a-3+4 \sqrt{k m} \cdot \cos (1 / 3 \cdot \arctan (\sqrt{27} / a))}{6} \sim \sqrt{k m}
$$

with the principal value of arctan, we obtain

$$
\begin{aligned}
R^{\prime} & =\left|\operatorname{det}\left(\begin{array}{ll}
\log |\varepsilon| & \log \left|\varepsilon^{\prime}\right| \\
\log \left|\varepsilon^{\prime}\right| & \log \left|\varepsilon^{\prime \prime}\right|
\end{array}\right)\right| \\
& =(\log |\varepsilon+1|)^{2}-\log |\varepsilon+1| \log |\varepsilon|+(\log |\varepsilon|)^{2}
\end{aligned}
$$

Series expansions yield

$$
R^{\prime}=\frac{1}{4}(\log k m)^{2}-\frac{3 \log (k m)}{2 k m}+\frac{3}{4 k m}+O\left(\frac{\log k m}{(k m)^{2}}\right)
$$

and elementary calculus explicitly gives (4).
With (2) and Lemma 1 we immediately obtain from (1):
Let K be a cyclic cubic field with conductor $m>10^{5}$ and with generating polynomial f_{a}. Then,

$$
\begin{equation*}
h>0.023 \frac{m^{0.946}}{(\log k m)^{2}} \tag{5}
\end{equation*}
$$

Theorem. (a) Let K be a cyclic cubic field of type A with prime conductor m. Then $h<16$ holds only for the following values of m :

h	m
1	$7,13,19,37,79,97,139$
4	$163,349,607,709,937$
7	$313,877,1129,1567,1987,2557$
13	1063

(b) Let K be a cyclic cubic field of type B with prime conductor m. Then $h<43$ holds only for the following values of m :

h	m
1	61,331
4	547,1951
7	2437,3571
13	9241
28	4219,25117
31	23497
37	8269

Proof of the Theorem. From (5) we obtain $h>14$ for fields of type A with $m \geqslant 169339$, and $h>37.2$ for fields of type B with $m>10^{6}$. It is well known (see, e.g., Gras [4]) that primes $q \equiv-1 \bmod (3)$ divide the class number of a cyclic cubic field only with an even exponent. The table of class numbers of Shanks [13], and Table 1 below, complete the proof of the theorem.

Table 1
Class numbers of cyclic cubic fields of type B
with prime conductor $m<10^{6}$

b	$m=\frac{1+27 b^{2}}{4}$	h
3	61	1
7	331	1
9	547	$4=2^{2}$
17	1951	$4=2^{2}$
19	2437	7
23	3571	7
25	4219	$28=2^{2} \cdot 7$
33	7351	$49=7^{2}$
35	8269	37
37	9241	13
39	10267	$49=7^{2}$
45	13669	109
59	23497	31
61	25117	$28=2^{2} \cdot 7$
91	55897	$133=7 \cdot 19$
95	60919	193
105	74419	$688=2^{4} \cdot 43$
115	89269	211
117	92401	532
123	102121	307
129	112327	$604=2^{2} \cdot 7 \cdot 19$
131	115837	$148=2^{2} \cdot 151$
137	126691	97
147	145861	$652=2^{2} \cdot 163$
159	170647	$628=2^{2} \cdot 157$

b	$m=\frac{1+27 b^{2}}{4}$	h
173	202021	$316=2^{2} \cdot 79$
185	231019	$343=7^{3}$
189	241117	$1216=2^{6} \cdot 19$
191	246247	$175=5^{2} \cdot 7$
193	251431	$247=13 \cdot 19$
199	267307	$196=2^{2} \cdot 7^{2}$
205	283669	541
221	329677	$316=2^{2} \cdot 79$
227	347821	331
231	360187	$1732=2^{2} \cdot 433$
235	372769	$553=7 \cdot 79$
243	398581	$1075=5^{2} \cdot 43$
259	452797	769
261	459817	$2257=37 \cdot 61$
297	595411	$2299=11^{2} \cdot 19$
299	603457	739
301	611557	$889=7 \cdot 127$
303	619711	$1156=2^{2} \cdot 17^{2}$
305	627919	$1552=2^{4} \cdot 97$
341	784897	$688=2^{4} \cdot 43$
347	812761	769
361	879667	$688=2^{4} \cdot 43$
367	909151	787
371	929077	$1588=2^{2} \cdot 397$
373	939121	661
383	990151	$532=2^{2} \cdot 7 \cdot 19$

The class numbers of Table 1 were calculated with a "Sirius 1 Personal Computer", using the analytic class number formula (1). We also used that for fields of type B the roots of f_{a} are already fundamental units, and therefore $R=R^{\prime}$ can be calculated with the explicit formula for ε, given in the proof of Lemma 1 . In the following way it can be proved that ε is a fundamental unit:

Let K be a field of type B with generating polynomial $f_{a}, a=27 b$ and $m=\left(1+27 b^{2}\right) / 4$. Hasse [8] investigated the arithmetic of cyclic cubic fields, using the Gauss sums of the corresponding Dirichlet characters. With Hasse's notation, every integer $\alpha \in K$ can be written as $\alpha=[x, y]$ with $x \in \mathbf{Z}, y \in \mathbf{Z}[\rho]$, where $\rho^{2}+\rho+1=0$, and $x \equiv y \bmod (1-\rho)$. If α is a unit of $K, N(\alpha)=1$ implies $x^{3} \equiv 27 \bmod (m)$ and $|x| \leqslant 2 \sqrt{m y \bar{y}}$ (Satz 8, [8]). For the roots of $f_{27 b}$ we have $\varepsilon=[(27 b-3) / 2,3 i \sqrt{3}]$ and its conjugates. Since Godwin's conjecture about fundamental units holds for cyclic cubic fields with $m>9$ (see Gras [6]), we have to show:

There exists no unit $\alpha=[x, y] \in K, \alpha \neq \pm 1$, with $m y \bar{y}=\frac{1}{2} \operatorname{tr}\left(\alpha-\alpha^{\prime}\right)^{2}$ $<\frac{1}{2} \operatorname{tr}\left(\varepsilon-\varepsilon^{\prime}\right)^{2}=27 m$, where tr denotes the trace from K to \mathbf{Q}.
Suppose the contrary. Then $x^{3} \equiv 27 \bmod (m)$ and $|x|<2 \sqrt{27 m}$ imply $x \in$ $\{3,(27 b-3) / 2,-(27 b+3) / 2\}$ for $b \geqslant 7$. Considering $0 \equiv x \equiv y \bmod (1-\rho)$ and $y \bar{y}<27$ yields only a few possibilities for $y \in \mathbf{Z}[\rho]$, and one can check that for each
of these $y, N(\alpha)=1$ has no solution $\alpha \neq 1$. For small values of b, one can consult the table in [5].

In the same way, but with much less computation, one can prove that for $k=1$ (type A) and $k=3$ the roots of f_{a} are also fundamental units. In these cases one has $\varepsilon=[(a-3) / 2, \pm 1]$ with $(a-3) / 2 \equiv \pm 1 \bmod (3)$, and $\varepsilon=[(9 b-3) / 2, i \sqrt{3}]$, respectively.
3. A Lower Bound for $L(1, \chi) \cdot L(1, \bar{\chi})$. Let m be the conductor of a cyclic cubic field K, χ and $\bar{\chi}$ the nontrivial cubic Dirichlet characters modulo m associated with K, and $f(s)=L(s, \chi) L(s, \bar{\chi})$. To find a lower bound for $f(1)$, we first need an upper bound for $|f(s)|$ in a disk in \mathbf{C} containing 1. Consider $C=C(\mu, \rho)=$ $\left\{s \in \mathbf{C}||s-\mu|<\rho\}\right.$ with $1<\mu$ and $\mu-1<\rho<\mu$, and set $\sigma_{0}=\mu-\rho$. Let $s=$ $\sigma+i t \in \mathbf{C}$. For $\sigma>0$ we have the representation

$$
L(s, \chi)=\sum_{n=1}^{m-1} \frac{\chi(n)}{n^{s}}+s \cdot \int_{m}^{\infty} \frac{S(x, \chi)}{x^{s+1}} d x \quad \text { with } S(x, \chi)=\sum_{1 \leqslant n<x} \chi(n)
$$

(see [16, p. 211]). The inequality of Pólya-Vinogradov [16, Lemma 11.8] states that $|S(x, \chi)|<\sqrt{m} \cdot \log m$. For $s \in C(\mu, \rho)$, the function $|s| / \sigma=1 / \cos (\arg s)$ attains its maximum $\mu / \sqrt{\mu^{2}-\rho^{2}}$ if s is the point of contact of a tangent of C through 0 . Combining these results, we obtain for every $s \in C(\mu, \rho)$:

$$
\begin{aligned}
|L(s, \chi)| & <1+\int_{1}^{m} \frac{1}{x^{\sigma_{0}}} d x+|s| \sqrt{m} \cdot \log m \int_{m}^{\infty} \frac{1}{x^{\sigma+1}} d x \\
& <\frac{1}{1-\sigma_{0}} m^{1-\sigma_{0}}+\frac{\mu}{\sqrt{\mu^{2}-\rho^{2}}} \log m \cdot m^{0.5-\sigma_{0}} .
\end{aligned}
$$

Since $\log x / \sqrt{x}$ is monotone decreasing for $x \geqslant e^{2}$, we conclude that for $m \geqslant m_{0} \geqslant$ e^{2},

$$
\begin{equation*}
|f(s)|<c_{1} \cdot m^{2-2 \sigma_{0}} \tag{6}
\end{equation*}
$$

holds for all $s \in C(\mu, \rho)$, with

$$
c_{1}=\left(\frac{1}{1-\sigma_{0}}+\frac{\mu}{\sqrt{\mu^{2}-\rho^{2}}} \cdot \frac{\log m_{0}}{\sqrt{m_{0}}}\right)^{2} .
$$

Lemma 2. If K is a cyclic cubic number field with conductor m, then $f(1)>c_{6} \cdot m^{-c_{7}}$, with $c_{6}, c_{7}>0$ as given in the course of the proof. Furthermore, c_{7} can be made arbitrarily small.

Proof of Lemma 2. The proof follows mainly Washington [16, pp. 212-214]. Let $\zeta(s)$ be the Riemann zeta function and $\zeta_{K}(s)=\zeta(s) f(s)$ the zeta function of the cyclic cubic field K with conductor m. If $s=\sigma+i t \in \mathbf{C}$, we have

$$
\zeta_{K}(s)=1+\sum_{n=2}^{\infty} \frac{a_{n}}{n^{s}} \quad \text { for } \sigma>1
$$

with $a_{n} \geqslant 0$, and $a_{n} \geqslant 1$ if n is a cube. Developing ζ_{K} in a power series around $\mu>1$ gives

$$
\zeta_{K}(s)=\sum_{j=0}^{\infty} b_{j}(\mu-s)^{j}
$$

with
(7) $b_{0}=\zeta_{K}(\mu)>\zeta(3 \mu)>1 \quad$ and $\quad b_{j}=\frac{1}{j!} \sum_{n=2}^{\infty}(\log n)^{j} \cdot \frac{a_{n}}{n^{\mu}}>0$ for $j \geqslant 1$.

The integral representation of $\zeta(s)$ for $\sigma>0$ yields

$$
|\zeta(s)| \leqslant\left|\frac{s}{s-1}\right|+|s| \int_{1}^{\infty} \frac{1}{u^{\sigma+1}} d u=\left|\frac{s}{s-1}\right|+\frac{|s|}{\sigma}
$$

and

$$
\begin{aligned}
|\zeta(s)| & \leqslant\left|\frac{s}{s-1}\right|+|s| \cdot \sum_{n=1}^{\infty} \frac{1}{n^{\sigma+1}} \cdot \int_{n}^{n+1}(u-[u]) d u \\
& <\left|\frac{s}{s-1}\right|+\frac{|s|}{2}\left(1+\frac{1}{\sigma}\right)
\end{aligned}
$$

Let $C=C(\mu, \rho)$, with $\mu-1<\rho<\mu$, be the disk with center μ and radius ρ, and denote its boundary by ∂C. Using (6), we get for all $s \in \partial C$:

$$
\begin{equation*}
\left|\zeta_{K}(s)-\frac{f(1)}{s-1}\right| \leqslant|\zeta(s)| \cdot|f(s)|+\frac{1}{|s-1|} \cdot|f(1)|<c_{2} \cdot m^{2-2 \sigma_{0}} \tag{8}
\end{equation*}
$$

with

$$
c_{2}=c_{1} \cdot \max _{s \in \partial C}\left(\frac{|s|+1}{|s-1|}+|s| \cdot \min \left\{\frac{1}{\sigma}, \frac{1}{2}\left(1+\frac{1}{\sigma}\right)\right\}\right)
$$

Since $\zeta_{K}(s)-f(1) /(s-1)$ is holomorphic in the whole complex plane, (8) holds for all $s \in C(\mu, \rho)$. Computing the coefficients of

$$
\zeta_{K}(s)-\frac{f(1)}{s-1}=\sum_{j=0}^{\infty}\left(b_{j}-\frac{f(1)}{(\mu-1)^{j+1}}\right) \cdot(\mu-s)^{j}
$$

with a Cauchy integral gives

$$
\left|b_{j}-\frac{f(1)}{(\mu-1)^{j+1}}\right|=\left|\frac{1}{2 \pi i} \int_{\partial C}\left(\zeta_{K}(s)-\frac{f(1)}{s-1}\right) \frac{d s}{(s-\mu)^{j+1}}\right|<\frac{c_{2}}{\rho^{j}} \cdot m^{2-2 \sigma_{0}}
$$

For $0<\sigma<1$, the integral representation of $\zeta(s)$, and $f(\sigma)=|L(\sigma, \chi)|^{2}$, show that $\zeta_{K}(\sigma) \leqslant 0$. So for any α with $\sigma_{0}<\alpha<1$, and any $\nu \in \mathbf{R}^{+}$with $1<\nu$, we have

$$
\begin{aligned}
&-\frac{f(1)}{\alpha-1} \geqslant \zeta_{K}(\alpha)-\frac{f(1)}{\alpha-1}>\sum_{j=0}^{[\nu]-1}\left(b_{j}-\frac{f(1)}{(\mu-1)^{j+1}}\right) \cdot(\mu-\alpha)^{j} \\
&-c_{2} \cdot m^{2-2 \sigma_{0}} \cdot \sum_{j=[\nu]}^{\infty}\left(\frac{\mu-\alpha}{\rho}\right)^{j} \\
& \geqslant c_{3}-\frac{f(1)}{\alpha-1}-\frac{f(1)}{1-\alpha}\left(\frac{\mu-\alpha}{\mu-1}\right)^{\nu}-c_{2} \cdot m^{2-2 \sigma_{0}}\left(\frac{\mu-\alpha}{\rho}\right)^{\nu-1} \cdot \frac{\rho}{\alpha-\sigma_{0}} \\
& \quad \text { where } \sum_{j=0}^{[\nu]-1} b_{j}(\mu-\alpha)^{j} \geqslant c_{3} \geqslant 1 .
\end{aligned}
$$

From this inequality, we obtain

$$
f(1)>c_{3}(1-\alpha)\left(\frac{\mu-1}{\mu-\alpha}\right)^{\nu}-c_{2} \cdot m^{2-2 \sigma_{0}} \cdot \frac{\rho^{2}(1-\alpha)}{(\mu-\alpha)\left(\alpha-\sigma_{0}\right)}\left(\frac{\mu-1}{\rho}\right)^{\nu}
$$

Choosing $\nu=c_{4} \cdot \log m+c_{5}$, with

$$
c_{4}=\frac{2-2 \sigma_{0}}{\log \frac{\rho}{\mu-\alpha}}
$$

and

$$
c_{5}=\frac{\log \frac{c_{2} \cdot \rho^{2}}{(\mu-\alpha)\left(\alpha-\sigma_{0}\right)}+\log \log \frac{\rho}{\mu-1}-\log \log \frac{\mu-\alpha}{\mu-1}}{\log \frac{\rho}{\mu-\alpha}}
$$

gives $f(1)>c_{6} \cdot m^{-c_{7}}$, with

$$
c_{6}=c_{3}(1-\alpha)\left(\frac{\mu-1}{\mu-\alpha}\right)^{c_{5}}-c_{2} \cdot \frac{\rho^{2}(1-\alpha)}{(\mu-\alpha)\left(\alpha-\sigma_{0}\right)} \cdot\left(\frac{\mu-1}{\rho}\right)^{c_{5}}
$$

and

$$
c_{7}=\left(2-2 \sigma_{0}\right) \cdot \log \frac{\mu-\alpha}{\mu-1} / \log \frac{\rho}{\mu-\alpha} .
$$

Since $c_{7} \rightarrow 0$ for $\alpha \rightarrow 1$, the proof of Lemma 2 is completed.
Numerical computations show that for $m_{0}=10^{5}$ good results can be obtained by choosing $\mu=10, \rho=9.9$ and $\alpha=0.975$. With these values we obtain $c_{2}=10.8685$ and $\nu \approx 315$.

Using (7), and $a_{n} \geqslant 1$ for n a cube, we obtain the following estimations for c_{3} :

$$
\begin{aligned}
& \sum_{j=0}^{[\nu]-1} b_{j}(\mu-\alpha)^{j} \geqslant \zeta_{K}(\mu)+\sum_{j=1}^{300} \frac{1}{j!} \sum_{n=2}^{\infty} \frac{a_{n}}{n^{\mu}}((\mu-\alpha) \log n)^{j} \\
& \quad>\zeta(3 \mu)+\sum_{k=2}^{N_{0}} \frac{1}{k^{3 \mu}} \sum_{j=1}^{300} \frac{1}{j!}((\mu-\alpha) 3 \cdot \log k)^{j} \\
& \quad>1+\sum_{k=2}^{N_{0}} \frac{1}{k^{3 \mu}}\left(k^{3(\mu-\alpha)}-\frac{((\mu-\alpha) 3 \cdot \log k)^{301}}{301!} \cdot \frac{302}{302-(\mu-\alpha) 3 \cdot \log k}\right)
\end{aligned}
$$

where $N_{0}<e^{302 / 3(\mu-\alpha)}$. With the special values for μ, ρ and α, and $N_{0}=100$, we obtain

$$
\sum_{j=0}^{[\nu]-1} b_{j}(\mu-\alpha)^{j}>\sum_{k=1}^{100} k^{-2.925}-10^{-40}>1.2175=c_{3} .
$$

These values yield $c_{6}>0.023$ and, $c_{7}<0.054$, and thus (2) is proved.
Institut für Mathematik
Karl-Franzens-Universität
Halbärthgasse 1
A-8010 Graz
Österreich, Austria

1. N. C. Ankeny, S. Chowla \& H. Hasse, "On the class-number of the maximal real subfield of a cyclotomic field," J. Reine Angew. Math., v. 217, 1965, pp. 217-220.
2. A. Châtelet, "Arithmétique des corps abéliens du troisième degré," Ann. Sci. École Norm. Sup. (3), v. 63, 1946, pp. 109-160.
3. G. Cornell \& L. C. Washington, "Class numbers of cyclotomic fields," J. Number Theory, v. 21, 1985, pp. 260-274.
4. M.-N. Gras, Sur le Nombre de Classes du Sous-Corps Cubique de $\mathbf{Q}^{(p)}$ ($p \equiv 1$ (3)), Thèse, Grenoble, 1971.
5. M.-N. Gras, "Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de Q," J. Reine Angew. Math., v. 277, 1975, pp. 89-116.
6. M.-N. Gras, "Note a propos d'une conjecture de H. J. Godwin sur les unités des corps cubiques," Ann. Inst. Fourier (Grenoble), v. 30/4, 1980, pp. 1-6.
7. G. H. Hardy \& E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, New York, 1979.
8. H. Hasse, "Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern," Abh. Deutsch. Akad. Wiss. Berlin Math.-Nat. Kl., 1948, Nr. 2, 95 pp.
9. S.-D. LaNG, "Note on the class-number of the maximal real subfield of a cyclotomic field", J. Reine Angew. Math., v. 290, 1977, pp. 70-72.
10. F. J. van der Linden, "Class number computations of real abelian number fields," Math. Comp., v. 39, 1982, pp. 693-707.
11. C. Moser, Sur le Nombre de Classes d'un Corps K Réel Cyclique de Conducteur Premier, deg $K \geqslant 4$, Seminaire Théorie des Nombres, Grenoble, 1980, 17 pp.
12. E. Seah, L. C. Washington \& H. C. Williams, "The calculation of a large cubic class number with an application to real cyclotomic fields", Math. Comp., v. 41, 1983, pp. 303-305.
13. D. Shanks, "The simplest cubic fields," Math. Comp., v. 28, 1974, pp. 1137-1152.
14. H. M. Stark, "Some effective cases of the Brauer-Siegel Theorem," Invent. Math., v. 23, 1974, pp. 135-152.
15. H. Takeuchi, "On the class-number of the maximal real subfield of a cyclotomic field," Canad. J. Math., v. 33, 1981, pp. 55-58.
16. L. C. Washington, Introduction to Cyclotomic Fields, GTM 83, Springer, New York, 1982.
17. H. YokoI, "On the diophantine equation $x^{2}-p y^{2}= \pm 4 q$ and the class number of real subfields of a cyclotomic field," Nagoya Math. J., v. 91, 1983, pp. 151-161.

[^0]: Received November 6, 1984; revised July 15, 1985.
 1980 Mathematics Subject Classification. Primary 12A30, 12A50.

